

STS20NHS3LL

N-CHANNEL 30 V - 0.0032 Ω - 20 A SO-8 STripFETTMIII MOSFET PLUS MONOLITHIC SCHOTTKY

PRELIMINARY DATA

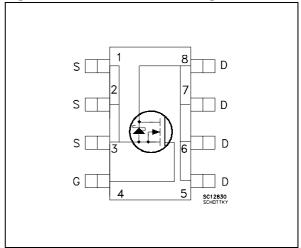
Table 1: General Features

TYPE	V _{DSS} R _{DS(on)}		I _D
STS20NHS3LL	30V	< 0.004Ω	20A(1)

- TYPICAL R_{DS}(on) = 0.0032Ω @ 10V
- OPTIMAL R_{DS}(on) x Qg TRADE-OFF @ 4.5V
- REDUCED SWITCHING LOSSES
- REDUCED CONDUCTION LOSSES
- REDUCED DIODE RECOVERY LOSSES
- IMPROVED JUNCTION-CASE THERMAL RESISTANCE

DESCRIPTION

The **STS20NHS3LL** utilizes the latest advanced design rules of ST's proprietary STripFET[™] technology, and a proprietary process for integrating a monolithic Schottky diode. The new MOSFET is optimized for the most demanding synchronous switch function in DC-DC converter for Computer and Telecom.


APPLICATIONS

- DC-DC CONVERTERS FOR TELECOM AND NOTEBOOK CPU CORE
- SYNCHRONOUS RECTIFICATION

Figure 1: Package

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STS20NHS3LL	20HS3LL-	SO-8	TAPE & REEL

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	30	V
V _{GS}	Gate- source Voltage	± 18	V
I _{D(1)}	Drain Current (continuous) at T _C = 25°C	20	А
I _D	Drain Current (continuous) at T _C = 100°C	12.6	А
I _{DM} (2)	Drain Current (pulsed)	80	А
P _{tot}	Total Dissipation at T _C = 25°C	2.7	W

Table 4: Thermal Data

Ĭ	Rthj-amb (3)	Thermal Resistance Junction-ambient Max	47	°C/W
		Maximum Operating Junction Temperature	-55 to 150	°C
	T_{stg}	Storage Temperature	-55 to 150	°C

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I _{AV}	Not-Repetitive Avalanche Current (pulse width limited by T _j max)	12.5	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AV}$, $V_{DD} = 24$ V)	1.3	J

ELECTRICAL CHARACTERISTICS (T_J =25°C UNLESS OTHERWISE SPECIFIED)

Table 6: On /Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 1$ mA, $V_{GS} = 0$	30			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V _{DS} = 24V			500	μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 18V			±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 1mA$	1		2.5	V
		V _{GS} = 10V, I _D = 10A V _{GS} = 4.5V, I _D = 10A		0.0032 0.004	0.004 0.0055	Ω

Table 7: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (4)	Forward Transconductance	V _{DS} =15V, I _D = 12A		30		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25V$, $f = 1MHz$, $V_{GS} = 0$		3950 720 70		pF pF pF

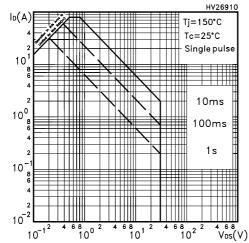
ELECTRICAL CHARACTERISTICS (CONTINUED)

Table 8: Switching On

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$\begin{aligned} &V_{DD} = 15V, I_{D} = 10A \\ &R_{G} = 4.7\Omega \; , V_{GS} = 4.5V \\ &(see \; Figure \; 15) \end{aligned}$		TBD TBD		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} =15V, I _D =20A V _{GS} = 4.5V (see Figure 17)		27.5 7.9 8.7	37	nC nC nC

Table 9: Switching Off

Ī	Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	$t_{d(off)} \ t_{f}$	Turn-off Delay Time Fall Time	$V_{DD} = 15V, I_D = 10A$ $R_{G} = 4.7\Omega, V_{GS} = 4.5V$ (see Figure 15)		TBD TBD		ns ns


Table 10: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM}	Source-drain Current Source-drain Current (pulsed)				20 80	A A
V _{SD} (4)	Forward On Voltage	I _{SD} = 10A ,V _{GS} = 0			0.7	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 10A$, di/dt = 100A/ μ s $V_{DD} = 25V$, $T_j = 150$ °C (see Figure 16)		1.9	26 25	ns nC A

- Notes:
 1. This value is rated according to Rthj-pcb
 2. Pulse width limited by safe operating area
 3. When mounted on FR-4 board with 1 inch² pad, 2 oz of Cu and t < 10sec
 4. Pulsed: pulse duration = 300µs, duty cycle 1.5%

A7/.

Figure 3: Safe Operating Area

Figure 4: Output Characteristics

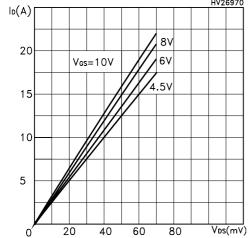


Figure 5: Transconductance

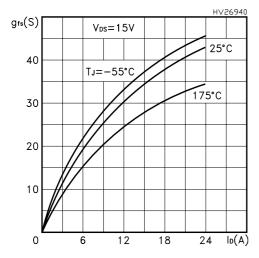


Figure 6: Thermal Impedance

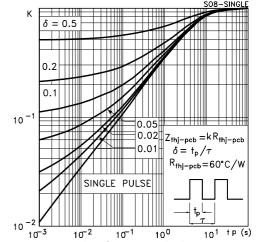


Figure 7: Transfer Characteristics

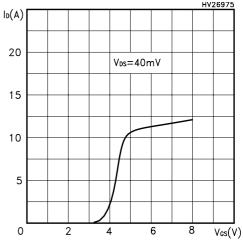


Figure 8: Static Drain-source On Resistance

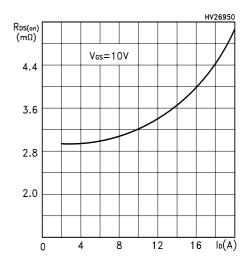


Figure 9: Gate Charge vs Gate-source Voltage

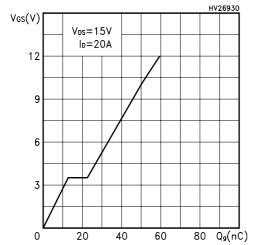


Figure 10: Normalized Gate Thereshold Voltage vs Temperature

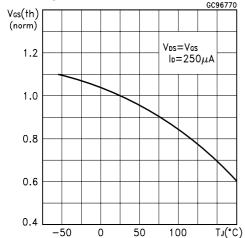


Figure 11: Normalized On Resistance vs Temperature

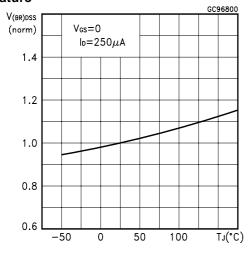


Figure 12: Capacitance Variations

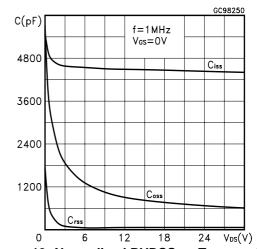


Figure 13: Normalized BVDSS vs Temperature

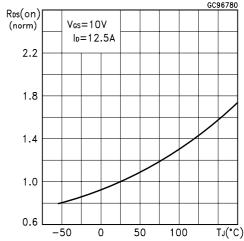


Figure 14: Source-Drain Diode Forward Characteristics

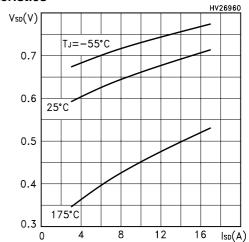


Figure 15: Switching Times Test Circuit For Resistive Load

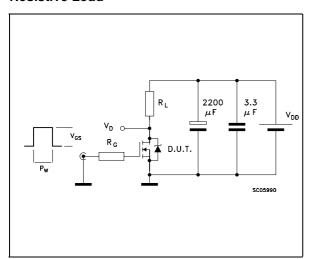


Figure 16: Test Circuit For Diode Recovery Times

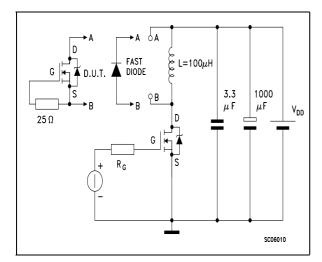
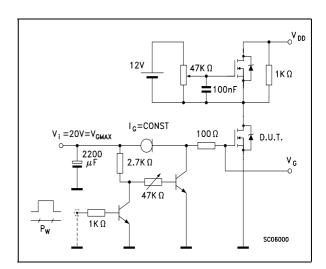
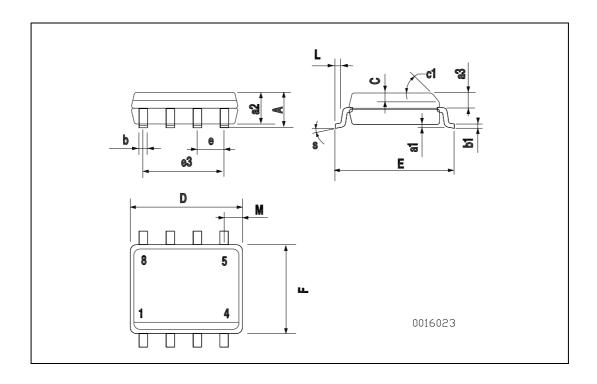




Figure 17: Gate Charge Test Circuit

SO-8 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1			45	(typ.)		
D	4.8		5.0	0.188		0.196
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S		8 (max.)				

47/°

STS20NHS3LL

Table 11: Revision History

Date	Revision	Description of Changes
24-May-2005	1	First release
19-Dec-2005	2	Inserted curves

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

47/_°